Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.
نویسندگان
چکیده
Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.
منابع مشابه
Structural Reinforcement of Cell-Laden Hydrogels with Microfabricated Three Dimensional Scaffolds.
Hydrogels commonly used in tissue engineering are mechanically soft, thus often display structural weakness. Herein, we introduce a strategy for enhancing the structural integrity and fracture toughness of cell-laden hydrogels by incorporating a three-dimensional (3D) microfabricated scaffold as a structural element. A digital micromirror device projection printing (DMD-PP) system, a rapid prot...
متن کاملColloidal templating of highly ordered gelatin methacryloyl-based hydrogel platforms for three-dimensional tissue analogues
Three-dimensional, protein-based hydrogel scaffolds that successfully mimic in vivo extracellular matrix microenvironments are desirable for tissue engineering and regenerative medicine applications, and can provide highly capable in vitro tissue analogues. However, the fabrication of protein-based scaffolds with uniform porosity, thin walls and durable mechanical properties remains a challengi...
متن کاملSynthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels.
Poly(ethylene glycol) (PEG) hydrogels are popular for cell culture and tissue-engineering applications because they are nontoxic and exhibit favorable hydration and nutrient transport properties. However, cells cannot adhere to, remodel, proliferate within, or degrade PEG hydrogels. Methacrylated gelatin (GelMA), derived from denatured collagen, yields an enzymatically degradable, photocrosslin...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced healthcare materials
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2016